Counting 1,563 Big Data & Machine Learning Frameworks, Toolsets, and Examples...
Suggestion? Feedback? Tweet @stkim1

Author
Contributors
Last Commit
Jun. 24, 2017
Created
Dec. 7, 2016

Generative Models

Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Note:

Generated samples will be stored in GAN/{gan_model}/out or VAE/{vae_model}/out directory during training.

What's in it?

Generative Adversarial Nets (GAN)

  1. Vanilla GAN
  2. Conditional GAN
  3. InfoGAN
  4. Wasserstein GAN
  5. Mode Regularized GAN
  6. Coupled GAN
  7. Auxiliary Classifier GAN
  8. Least Squares GAN
  9. Boundary Seeking GAN
  10. Energy Based GAN
  11. f-GAN
  12. Generative Adversarial Parallelization
  13. DiscoGAN
  14. Adversarial Feature Learning & Adversarially Learned Inference
  15. Boundary Equilibrium GAN
  16. Improved Training for Wasserstein GAN
  17. DualGAN
  18. MAGAN: Margin Adaptation for GAN

Variational Autoencoder (VAE)

  1. Vanilla VAE
  2. Conditional VAE
  3. Denoising VAE
  4. Adversarial Autoencoder
  5. Adversarial Variational Bayes

Dependencies

  1. Install miniconda http://conda.pydata.org/miniconda.html
  2. Do conda env create
  3. Enter the env source activate generative-models
  4. Install Tensorflow
  5. Install Pytorch