Counting 3,834 Big Data & Machine Learning Frameworks, Toolsets, and Examples...
Suggestion? Feedback? Tweet @stkim1

Author
Last Commit
May. 23, 2019
Created
Apr. 22, 2012

forecast

Travis-CI Build Status CRAN_Status_Badge lifecycle Downloads Licence

The R package forecast provides methods and tools for displaying and analysing univariate time series forecasts including exponential smoothing via state space models and automatic ARIMA modelling.

Installation

You can install the stable version from CRAN.

install.packages('forecast', dependencies = TRUE)

You can install the development version from Github

# install.packages("devtools")
devtools::install_github("robjhyndman/forecast")

Usage

library(forecast)
library(ggplot2)

# ETS forecasts
USAccDeaths %>%
  ets() %>%
  forecast() %>%
  autoplot()

# Automatic ARIMA forecasts
WWWusage %>%
  auto.arima() %>%
  forecast(h=20) %>%
  autoplot()

# ARFIMA forecasts
library(fracdiff)
x <- fracdiff.sim( 100, ma=-.4, d=.3)$series
arfima(x) %>%
  forecast(h=30) %>%
  autoplot()

# Forecasting with STL
USAccDeaths %>%
  stlm(modelfunction=ar) %>%
  forecast(h=36) %>%
  autoplot()

AirPassengers %>%
  stlf(lambda=0) %>%
  autoplot()

USAccDeaths %>%
  stl(s.window='periodic') %>%
  forecast() %>%
  autoplot()

# TBATS forecasts
USAccDeaths %>%
  tbats() %>%
  forecast() %>%
  autoplot()

taylor %>%
  tbats() %>%
  forecast() %>%
  autoplot()

For more information

License

This package is free and open source software, licensed under GPL-3.

Latest Releases
CRAN v8.7
 Apr. 28 2019
CRAN v8.6
 Apr. 17 2019
CRAN v8.5
 Feb. 4 2019
v8.5
 Jan. 18 2019
CRAN v8.4
 Sep. 11 2018