Counting 3,663 Big Data & Machine Learning Frameworks, Toolsets, and Examples...
Suggestion? Feedback? Tweet @stkim1

Last Commit
Mar. 26, 2019
Feb. 11, 2019


Code and samples from the paper "Language Models are Unsupervised Multitask Learners".

For now, we have only released a smaller (117M parameter) version of GPT-2.

See more details in our blog post.


This repository is meant to be a starting point for researchers and engineers to experiment with GPT-2-117M. While GPT-2-117M is less proficient than GPT-2-1.5B, it is useful for a wide range of research and applications which could also apply to larger models.

Some caveats

  • GPT-2-117M robustness and worst case behaviors are not well-understood. As with any machine-learned model, carefully evaluate GPT-2-117M for your use case, especially if used without fine-tuning or in safety-critical applications where reliability is important.
  • The dataset our GPT-2-117M was trained on contains many texts with biases and factual inaccuracies, and thus GPT-2-117M is likely to be biased and inaccurate as well.
  • To avoid having samples mistaken as human-written, we recommend clearly labeling samples as synthetic before wide dissemination. Our models are often incoherent or inaccurate in subtle ways, which takes more than a quick read for a human to notice.

Work with us

Please let us know if you’re doing interesting research with or working on applications of GPT-2-117M! We’re especially interested in hearing from and potentially working with those who are studying

  • Potential malicious use cases and defenses against them (e.g. the detectability of synthetic text)
  • The extent of problematic content (e.g. bias) being baked into the models and effective mitigations





GPT-2 samples

WARNING: Samples are unfiltered and may contain offensive content.

While we have not yet released GPT-2 itself, you can see some samples from it in the gpt-2-samples folder. We show unconditional samples with default settings (temperature 1 and no truncation), with temperature 0.7, and with truncation with top_k 40. We show conditional samples, with contexts drawn from WebText's test set, with default settings (temperature 1 and no truncation), with temperature 0.7, and with truncation with top_k 40.


Please use the following bibtex entry:

  title={Language Models are Unsupervised Multitask Learners},
  author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},

Future work

We may release code for evaluating the models on various benchmarks.

We are still considering release of the larger models.