Counting 1,690 Big Data & Machine Learning Frameworks, Toolsets, and Examples...
Suggestion? Feedback? Tweet @stkim1

Author
Contributors

YellowFin

YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measures the objective landscape on-the-fly and tune momentum as well as learning rate using local quadratic approximation.

The implmentation here can be a drop-in replacement for any optimizer in PyTorch. It supports step and zero_grad functions like any PyTorch optimizer after from yellowfin import YFOptimizer.

For more technical details, please refer to our paper YellowFin and the Art of Momentum Tuning.

For more usage details, please refer to the inline documentation of tuner_utils/yellowfin.py. Example usage can be found here for ResNext on CIFAR10 and Tied LSTM on PTB.

Updates

[2017.07.03] Fixed a gradient clipping bug. Please pull our latest master branch to make gradient clipping great again in YellowFin.

Setup instructions for experiments

Please clone the master branch and follow the instructions to run YellowFin on ResNext for CIFAR10 and tied LSTM on Penn Treebank for language modeling. The models are adapted from ResNext repo and PyTorch example tied LSTM repo respectively. Thanks to the researchers for developing the models. For more experiments on more convolutional and recurrent neural networks, please refer to our Tensorflow implementation of YellowFin.

Note YellowFin is tested with PyTorch v0.1.12 for compatibility. It is tested under Python 2.7.

Run CIFAR10 ResNext experiments

The experiments on 110 layer ResNet with CIFAR10 and 164 layer ResNet with CIFAR100 can be launched using

cd pytorch-cifar
python main.py --lr=1.0 --mu=0.0 --logdir=path_to_logs --opt_method=YF

Run Penn Treebank tied LSTM experiments

The experiments on multiple-layer LSTM on Penn Treebank can be launched using

cd word_language_model
python main.py --emsize 650 --nhid 650 --dropout 0.5 --epochs 40 --tied --opt_method=YF --logdir=path_to_logs --cuda

Detailed guidelines

a. YFOptimizer(parameter_list lr=1.0, mu=0.0) sets initial learnig rate and momentum to 1.0 and 0.0 respectively. This is the uniform setting (i.e. without tuning) for all our PyTorch and Tensorflow experiments. Typically, after a few thousand minibatches, the influence of these initial values diminishes.

b. If you want to clip the gradient, you can also consider using the clip_thresh argument when initializing the YFOptimizer.

c. If you want to use the typical lr-dropping technique after a ceritain number of epochs, or you want to more finely control the learning rate, please use set_lr_factor() in the YFOptimizer class. More details can be found here.

Additional experiments to test the repo

We use the ResNext on CIFAR10 and Tied LSTM on PTB to test the PyTorch implementation here. For more on experimental results, please refer to our paper.

ResNext

Tied LSTM

Tensorflow implementation

YellowFin Tensorflow Repo

YellowFin Theano Repo

We thank the contributors for YellowFin in different deep learning frameworks.