Counting 2,153 Big Data & Machine Learning Frameworks, Toolsets, and Examples...
Suggestion? Feedback? Tweet @stkim1

Author
Last Commit
Dec. 14, 2017
Created
Jun. 30, 2017

Core ML Community Tools

Core ML community tools contains all supporting tools for CoreML model conversion and validation. This includes Scikit Learn, LIBSVM, Caffe, Keras and XGBoost.

We recommend using virtualenv to use, install, or build coremltools. Be sure to install virtualenv using your system pip.

pip install virtualenv

Installation

The method for installing coremltools follows the standard python package installation steps. To create a Python virtual environment called pythonenv follow these steps:

# Create a folder for your virtualenv
mkdir mlvirtualenv
cd mlvirtualenv

# Create a Python virtual environment for your CoreML project
virtualenv pythonenv

To activate your new virtual environment and install coremltools in this environment, follow these steps:

# Active your virtual environment
source pythonenv/bin/activate


# Install coremltools in the new virtual environment, pythonenv
(pythonenv) pip install -U coremltools

The package documentation contains more details on how to use coremltools.

Dependencies

coremltools has the following dependencies:

  • numpy (1.12.1+)
  • protobuf (3.1.0+)

In addition, it has the following soft dependencies that are only needed when you are converting models of these formats:

  • Keras (1.2.2, 2.0.4+) with Tensorflow (1.0.x, 1.1.x)
  • Xgboost (0.6+)
  • scikit-learn (0.15+)
  • libSVM

Building from source

To build the project, you need CMake to configure the project

cmake .

after which you can use make to build the project

make

Building Installable Wheel

To make a wheel/egg that you can distribute, you can do the following

make dist 

Running Unit Tests

In order to run unit tests, you need pytest, pandas, and h5py.

pip install pytest pandas h5py

To add a new unit test, add it to the coremltools/test folder. Make sure you name the file with a 'test' as the prefix.

Additionally, running unit-tests would require more packages (like libsvm)

pip install numpy scipy scikit-learn

To install libsvm

git clone https://github.com/cjlin1/libsvm.git
cd libsvm/
make
cd python/
make

To make sure you can run libsvm python bindings everywhere, you need the following command, replacing <LIBSVM_PATH> with the path to the root of your repository.

export PYTHONPATH=${PYTHONPATH}:<LIBSVM_PATH>/python

To install xgboost

git clone --recursive https://github.com/dmlc/xgboost
cd xgboost; cp make/minimum.mk ./config.mk; make
cd python-package; python setup.py develop

To install keras (Version >= 2.0)

pip install keras tensorflow

If you'd like to use the old keras version, you can:

pip install keras==1.2.2 tensorflow

Finally, to run the most important unit tests, you can use:

pytest -rs

some tests are marked as slow because they test a lot of combinations. If you want to run, all tests, you can use:

pytest

Building Documentation

First install all external dependencies.

pip install Sphinx==1.5.3 sphinx-rtd-theme==0.2.4 numpydoc
pip install -e git+git://github.com/michaeljones/sphinx-to-github.git#egg=sphinx-to-github

You also must have the coremltools package install, see the Building section.

Then from the root of the repository:

cd docs
make html
open _build/html/index.html

External Tools

In addition to the conversion tools in this package, TensorFlow and MXNet have their own conversion tools:

Latest Releases
coremltools-0.7.0
 Dec. 4 2017
coremltools-0.6.3
 Aug. 31 2017
v0.5.1
 Aug. 4 2017